a mixture of the secondary alcohols ($130.0 \mathrm{mg}, 0.38 \mathrm{mmol}, 81 \%$).
To a solution of Collins reagent ($740 \mathrm{mg}, 2.87 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) was added a solution of the alcohols ($99.4 \mathrm{mg}, 0.29 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. After 5 min being stirred at room temperature, the mixture was decanted and the black residue was washed with several portions of ether. The organic layer was combined, washed successively with $5 \% \mathrm{NaOH}$ solution, $5 \% \mathrm{HCl}$, saturated NaHCO_{3} solution, and saturated brine, dried over MgSO_{4}, and concentrated. Chromatography (3 g of silica gel; 5:1 hexane-ethyl acetate) of the residue gave $15(95.7 \mathrm{mg}, 0.28 \mathrm{mmol}, 97 \%)$.
15: colorless oil; IR 1705 (s) and 1695 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 4.57$ $(1 \mathrm{H}, \mathrm{m}), 2.7-2.45(2 \mathrm{H}, \mathrm{m}), 2.2-1.2(13 \mathrm{H}, \mathrm{m}), 1.07(3 \mathrm{H}, \mathrm{d}, J=$ $6.5 \mathrm{~Hz}), 1.05-0.95(3 \mathrm{H}, \mathrm{br}), 0.89(9 \mathrm{H}, \mathrm{s}), 0.10(3 \mathrm{H}, \mathrm{s})$, and 0.07 ($3 \mathrm{H}, \mathrm{s}$).
endo-3- and exo-3-Butyl-exo-4-methylbicyclo[4.3.0]non1 (9)-en-2-ones (8a and 8b, Respectively). To a solution of potassium tert-butoxide ($37.0 \mathrm{mg}, 0.33 \mathrm{mmol}$) in THF (8 mL) was added a solution of $15(100.0 \mathrm{mg}, 0.295 \mathrm{mmol})$ and tert-butyl alcohol (0.05 mL) in THF (2 mL) under argon at room temperature. After being stirred for 30 min , the mixture was treated with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with three portions of ether. The ethereal extracts were combined, washed with saturated brine, and dried over MgSO_{4}. Evaporation of the solvent, followed by chromatography of the residue on silica gel ($5 \mathrm{~g} ; 60: 1$ hexene-ethyl acetate), gave a mixture of 8 a and 8 b (56.7 $\mathrm{mg}, 0.27 \mathrm{mmol}, 92 \%$). Analytical samples of these isomers were obtained by careful fractionation of the eluate.
8a: colorless oil; IR $\left(\mathrm{CCl}_{4}\right) 2920$ (s), 2860 (s), 1680 (s), and 1615 $(\mathrm{m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.57(1 \mathrm{H}$, ddd, $J=2.3,2.3$, and $2.3 \mathrm{~Hz}), 3.08\left(1 \mathrm{H}, \mathrm{br}, W_{1 / 2}=5 \mathrm{~Hz}\right), 2.5-2.0(6 \mathrm{H}, \mathrm{m}), 1.85-1.15$ $(8 \mathrm{H}, \mathrm{m}), 1.06(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz})$, and $0.89(3 \mathrm{H}, \mathrm{m})$; MS (25 eV), m / z (rel intensity) $206\left(\mathrm{M}^{+}, 2.1\right), 191$ (1.5), 151 (13.4), and 150 (100).

8b: colorless oil; IR (CCl ${ }_{4}$) 2930 (s), 2860 (s), 1685 (s) and 1620 (m) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.46(1 \mathrm{H}$, ddd, $J=2.3,2.3$, and $2.3 \mathrm{~Hz}), 3.11\left(1 \mathrm{H}, \mathrm{br}, W_{1 / 2}=5 \mathrm{~Hz}\right), 2.5-2.15(5 \mathrm{H}, \mathrm{m}), 2.12-1.8$ $(3 \mathrm{H}, \mathrm{m}), 1.8-1.0(6 \mathrm{H}, \mathrm{m}), 0.92(3 \mathrm{H}, \mathrm{m})$, and $0.91(3 \mathrm{H}, \mathrm{d}, J=$ 7.0 Hz); MS (25 eV), m / z (rel intensity) 206 ($\mathrm{M}^{+}, 2.0$), 191 (4.0),

150 (59.1), and 135 (100); exact mass found $m / z 206.1654$, calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}$ M 206.1670 .
(\pm)-Ptilocaulin (1). (a) A solution of guanidine was prepared from the carbonate ($22.0 \mathrm{mg}, 0.12 \mathrm{mmol}$) by sonication for 5 min with sodium methoxide ($13.0 \mathrm{mg}, 0.24 \mathrm{mmol}$) in methanol under argon. The reaction mixture was carefully filtered and the filtrate was concentrated in vacuo. The reaction flask containing the residue was fitted with a Soxhlet extractor in which were placed 4A molecular sieves and charged with nitrogen and a solution of 8 a ($27.6 \mathrm{mg}, 0.13 \mathrm{mmol}$) in benzene (25 mL). The mixture was heated under reflux for 25 h under a nitrogen atmosphere and then allowed to cool to room temperature. The solution was neutralized with $1 \% \mathrm{HNO}_{3}(2 \mathrm{~mL})$ and the aqueous layer was extracted with three portions of CHCl_{3}. The extracts were combined, washed with saturated NaNO_{3} solution, ${ }^{4 \mathrm{~b}}$ dried over MgSO_{4}, and concentrated. Chromatography of the residue on silica gel ($5 \mathrm{~g} ; \mathrm{CHCl}_{3}-\mathrm{MeOH}, 85: 15$) gave (\pm)-ptilocaulin nitrate (18.8 mg , $0.060 \mathrm{mmol}, 50 \%$).
(b) When a mixture of $8 \mathbf{a}$ and $8 \mathbf{b}(44.6 \mathrm{mg}, 0.216 \mathrm{mmol})$ was treated by a similar procedure to that described above (\pm)-1 was derived in 27% yield ($18.1 \mathrm{mg}, 0.058 \mathrm{mmol}$).
$(\pm)-1: m p 151-152^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 8.96(1$ H , br s, $\left.W_{1 / 2}=5 \mathrm{~Hz}\right), 8.30\left(1 \mathrm{H}, \mathrm{br}\right.$ s, $\left.W_{1 / 2}=8 \mathrm{~Hz}\right), 7.39(2 \mathrm{H}$, br s, $W_{1 / 2}=10 \mathrm{~Hz}$), $3.77(1 \mathrm{H}, \mathrm{m}), 2.55-2.3(4 \mathrm{H}, \mathrm{m}), 2.2-1.95(2$ $\mathrm{H}, \mathrm{m}), 1.95-1.1(9 \mathrm{H}, \mathrm{m}), 1.05(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz})$, and $0.90(3$ $\mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 151.77,126.99,121.01,53.22$, $36.52,33.98,33.09,32.22,29.65,27.79,26.95,24.65,22.44,19.53$, 14.00; exact mass found $m / z 247.2020$, calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{M}$ 247.2047.

Acknowledgment. We express our sincere appreciation to Professor B. B. Snider of Brandeis University for providing us with ${ }^{1} \mathrm{H}$ NMR spectra of compounds $8 \mathbf{a}$ and $\mathbf{8 b}$ and natural ptilocaulin. Grateful acknowledgment is also made for support of this investigation by a Grant-in-Aid for Scientific Research No. 60540312 from the Ministry of Education, Science, and Culture, Japan.

Robustadials. 2. Total Synthesis of the Bicyclo[3.2.0]heptane Structure Proposed for Robustadials A and B

Kasturi Lal, Eugene A. Zarate, Wiley J. Youngs, and Robert G. Salomon*
Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-2699

Received November 29, 1987

Abstract

Total synthesis of the bicyclo[3.2.0]heptane structure 2a proposed for robustadial A was achieved. The molecular architecture of the synthetic product was unambiguously established by X-ray crystallographic analysis of an intermediate in the synthesis. However, spectral comparison clearly shows that 2 a is not the correct structure for the natural product robustadial A. Intramolecular copper(I)-catalyzed $2 \pi+2 \pi$ photocycloaddition was exploited as the key step for generating the bicyclo[3.2.0]heptane portion of 2 a from the 1,6 -heptadiene $\mathbf{1 6}$, which was assembled from $1,3,5$-trimethoxybenzene in six steps. Photocyclization of 16 proceeded smoothly, affording 17 in $75-80 \%$ yield.

A global resurgence of malaria, ${ }^{1}$ the appearance of strains of which are resistant ${ }^{2}$ to quinine, its analogues, and many of the relatively small number of known antimalarial drugs, provides an urgent need for the identification and total synthesis of new antimalarial natural products. Several active compounds are contained in an antimalarial ethanol extract of Eucalyptus robusta leaves, a plant used in Chinese herbal medicine. ${ }^{3}$ Robustaol A (1) was the first

[^0]
component isolated from this extract which showed in vivo antimalarial activity against Plasmodium berghei in mice. The structure of 1 was established by total synthesis. ${ }^{3}$ A

[^1]
second fraction of the ethanol extract contained several compounds that possessed considerably greater activity than $1 .{ }^{4}$ Two of these compounds, robustadial A and robustadial B , were isolated from this plant and assigned bicyclo[3.2.0] heptane structures $\mathbf{2 a}$ and $\mathbf{2 b}$ respectively on the basis of extensive and sophisticated NMR, UV, IR, and mass spectral studies. ${ }^{4}$ Since these epimeric natural products are available only in tiny amounts and are very difficult to separate, biological studies on the individual robustadials A or B have not yet been achieved. ${ }^{5}$ To provide a reliable supply for medicinal evaluation, we launched a total synthesis of robustadials. Particularly attractive was the prospect of demonstrating the utility of copper(I)-catalyzed photobicyclization ${ }^{6}$ for efficiently assembling the bicyclo[3.2.0]heptane portion of the structures 2a and 2b. We now report the successful application of this strategy for synthesis of 2a. However, spectral comparison clearly shows that $2 \mathbf{a}$ is not the correct structure for the natural product robustadial A.

Results and Discussion

For the total synthesis of $\mathbf{2 a}$ and $\mathbf{2 b}$, two strategies were explored involving key copper(1)-catalyzed photobicyclizations of 1,6 -dienes. For both approaches it was presumed that the pyran ring in 2 could be generated by cyclization of a phenol as in A (Scheme I). Two routes were envisioned for assembling a tertiary alcohol precursor B. In one approach (Scheme II), photobicyclization is performed with a simple diene 3 , and the product 4 is converted to B by oxidation and addition of a trimethoxyphenethyl carbanion to an intermediate ketone 5 . The hydroxy diene 3 is readily available from 2,2-dimethyl-but-3-enal ${ }^{7}$ by reaction with allylmagnesium bromide. Copper(I)-catalyzed photocyclization of 3 cleanly delivered an epimeric mixture of 2-hydroxybicyclo[3.2.0]heptanes $4 x$ and $4 n$. Oxidation of the mixture produced a single

[^2]
Scheme III ${ }^{\text {a }}$

${ }^{a}$ (a) $\mathrm{CuOTf} / h \nu$; (b) $\mathrm{EtSNa} / \mathrm{DMF}$; (c) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
ketone 5. Unfortunately, the Grignard reagent, prepared from 2-(2,4,6-trimethoxyphenyl)ethyl bromide, abstracted a proton from 5, generating 2 -ethyl-1,3,5-trimethoxybenzene rather than providing the desired adduct 6 , which requires 1,2 -addition to a sterically congested carbonyl group. Even cyclopentanone underwent proton abstraction (24% yield) by the above-mentioned Grignard reagent in preference to 1,2 -addition (14% yield).
Therefore, we adopted an alternative strategy (Scheme III) in which the sterically congested tertiary alcohol is assembled prior to photocycloaddition. Diene 7 was assembled in 78% overall yield in four steps from 2,4,6trimethoxybenzaldehyde. ${ }^{8 \mathrm{~b}}$

The synthetic versatility of copper(I)-catalyzed photobicyclizations is demonstrated by the production of 6 in reproducibly good yield upon UV irradiation of 7 in the presence of copper(I) trifluoromethanesulfonate. Monodemethylation of 6 with NaSEt affording 8 set the stage for generation of the pyran ring. The favorable regioselectivity of this demethylation results from a novel remote neighboring group effect of the tertiary alcohol. ${ }^{8}$ Heterocyclization of the tertiary alcohol-monophenol 8 by treatment with boron trifluoride diethyl etherate in methylene chloride delivered a $3: 2$ mixture of epimeric tetrahydrospiro pyrans 9 , which was separated by HPLC on silica gel. ${ }^{1} \mathrm{H}$ NMR spectral analysis suggests structure 9 a for the less polar major isomer and structure 9 b for the more polar minor isomer. Boat conformations are presumed for these isomers since a chair conformation would incorporate severe steric congestion between an endo hydrogen on the cyclobutyl ring and an endo methyl group as depicted in 10 (Scheme III). The downfield shift to δ 1.02 of the endo methyl group resonance in the ${ }^{1} \mathrm{H}$ NMR spectrum of 9 a is ascribed to a deshielding effect of the vicinal oxygen. Since the exo methyl group in 9 a is remote from the vicinal oxygen, its resonance occurs at higher field: $\delta 0.80$. In the more polar minor isomer $9 \mathbf{b}$, both methyl substituents on the cyclopentane ring have deshielding gauche interactions with a vicinal oxygen and consequent downfield ${ }^{1} \mathrm{H}$ NMR shifts to $\delta 0.99$ and 1.02 .

Our successful total synthesis of the bicyclo[3.2.0]heptane $2 \mathfrak{a}$, presumed ${ }^{4}$ to be the natural product robustadial A, is outlined in Schemes IV and V. The requisite diene 16 was assembled in 60% overall yield in six steps from 1,3,5-trimethoxybenzene. Friedel-Crafts acylation provided the ketone 11, in which the carbonyl carbon is

[^3]Scheme IV ${ }^{a}$

${ }^{a}$ (a) $\mathrm{Me}_{2} \mathrm{CHCH}_{2} \mathrm{COCl} / \mathrm{AlCl}_{3}$; (b) $\mathrm{LiCH}_{2} \mathrm{CN}$; (c) $\mathrm{Et}_{3} \mathrm{SiH} /$ $\mathrm{CF}_{3} \mathrm{COOH}$; (d) $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{MgCl}$; (e) $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{MgBr}$; (f) CuOTf/h $\boldsymbol{\text { ; (g) }}$ EtSNa/DMF.
shielded by two adjacent methoxy groups. Low yields were obtained upon cyanomethylenation of 11 with the anion of dimethyl phosphonoacetonitrile presumably owing to steric congestion. However, lithioacetonitrile, ${ }^{9}$ a less bulky nucleophile, added to this carbonyl group to give the benzylic alcohol 12 in excellent yield. After reductive removal of the vestigial hydroxyl group, a ketone 15 was elaborated from nitrile 13 by a regioselective reaction with prenylmagnesium chloride. This appears to be the first example of such a regioselective reaction of this Grignard reagent with a nitrile. ${ }^{10}$ The observed preferential electrophilic attack at the more substituted allylic terminus presumably results from pseudointramolecular $\mathrm{C}-\mathrm{C}$ bond formation as in 14. Similar pseudointramolecular C-C bond formation probably accounts for the excellent yield of 1,2 -adduct 16 produced upon reaction of the sterically congested ketone 15 with allylmagnesium bromide. Since this diene is a mixture of diastereomers, photocyclization produces bicyclo[3.2.0]heptanes 17 as a mixture of diastereomers. Treatment of the derived monophenols 18 with $\mathrm{BF}_{3} \mathrm{OEt}_{2}$ generated an $8: 1: 1$ mixture of diastereomeric pyrans 19a-c in 77% combined yield. The less polar

$19 a$

19 b and 19 c
major diastereomer $19 \mathrm{a}\left(\mathrm{mp} 80-82^{\circ} \mathrm{C}\right.$) was readily isolated by HPLC on a Whatman M-20 μ-Porasil column eluting with 35% toluene in hexane. As for the epimers 9 discussed above, this less polar isomer was assigned the endo phenoxy configuration at the spiro center since only one methyl group on the cyclopentane ring, the endo methyl, shows a downfield-shifted ${ }^{1} \mathrm{H}$ NMR resonance (at $\delta 1.04$). In contrast, the exo methyl group in 19a, which has a trans diaxial relationship with the vicinal phenoxy substituent, produces a resonance at $\delta 0.77$. A more polar fraction from the heterocyclization of 17 contained two minor diaste-

[^4]Scheme \mathbf{V}^{a}

${ }^{a}$ (a) $\mathrm{Br}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) n - $\mathrm{BuLi} / \mathrm{THF}$, then CO_{2}, then HCl ; (c) $\mathrm{CH}_{2} \mathrm{~N}_{2}$; (d) DIBAH/PhMe; (e) PDC; (f) BCl_{3}.

Figure 1. X-ray structure of 20a.
reomeric pyrans 19 b and 19 c , which were separated by reverse-phase HPLC. As for $9 \mathbf{b}$, both of these pyrans are presumed to have an exo phenoxy configuration at the spiro center since the methyl groups on the cyclopentane ring all show resonances at relatively low field ($\delta 0.93-1.04$) owing to gauche relationships with a vicinal phenoxy oxygen.
That 19a has relative configurations corresponding to 2a was confirmed by X-ray crystal structural analysis of the derived dibromide 20a (see Scheme V). These configurations as well as the boat conformation of the bicyclo[3.2.0]heptane ring system are clearly evident from an ortep drawing (Figure 1) of the X-ray structure (see Experimental Section).

Lithium-bromine exchange followed by carboxylation, acidification, and O -methylation delivered the diester 22a $\left(\mathrm{mp} 135^{\circ} \mathrm{C}\right.$) from the dibromide 20a. The dimethyl ether 24a (mp $40-42^{\circ} \mathrm{C}$) of $2 \mathbf{a}$ was obtained from 22 a by reduction to a diol 23a, which was then oxidized to the dialdehyde 24a with pyridinium dichromate (PDC). Analogous sequences were executed to prepare the stereoisomeric dialdehydes 24 b and 24 c from 20 b and $20 \mathrm{c} .{ }^{13} \mathrm{C}$ NMR

comparison of the synthetic dialdehyde methyl ethers 24a-c with robustadial A dimethyl ether and robustadial B dimethyl ether (Table I) clearly shows that none of the synthetic compounds are identical with either of the naturally derived products. The quaternary carbon at position 2 in 24a absorbs at $\delta 47.8$ while 24b and 24c show

Table I. ${ }^{13}$ C NMR Spectral Data of Robustadial Dimethyl Ethers and the Synthetic Dialdehyde Dimethyl

Ethers 24a-c ${ }^{a}$

robust- adial A dimethyl ether	robust- adial B dimethyl ether	$\mathbf{2 4 a}$	$\mathbf{2 4 b}$	$\mathbf{2 4 c}$
21.3 q	21.0 q	16.6 q	19.0 t	18.3 t
23.6 q	23.4 q	20.2 t	20.6 q	21.1 q
24.2 q	23.8 q	20.7 q	21.1 q	22.0 q
25.3 t	24.8 t	24.0 t	23.6 q	22.6 q
26.0 d	25.8 d	24.1 q	24.1 q	23.7 q
27.0 t	26.9 d	25.3 d	25.3 d	25.6 d
27.8 d	27.0 t	27.3 q	25.7 t	26.4 d
28.1 q	27.3 q	27.5 d	27.6 d	26.7 t
31.6 t	28.3 t	33.7 t	33.0 t	26.7 t
$38.3 \mathrm{~s} \leftarrow$	$38.2 \mathrm{~s} \leftarrow$	34.2 d	34.4 d	35.8 d
39.9 t	39.1 t	39.6 t	39.8 t	43.6 t
40.9 d	40.5 d	44.9 t	45.6 t	44.6 t
$\mathbf{4 4 . 2 \mathrm { t }}$	44.5 t	$47.8 \mathrm{~s} \leftarrow$	$46.4 \mathrm{~s} \leftarrow$	47.6 d
49.7 d	51.0 d	50.5 d	48.6 d	$48.1 \mathrm{~s} \leftarrow$
65.0 q	62.5 q	62.2 q	62.2 q	62.9 q
66.0 q	64.8 q	64.8 q	64.7 q	64.9 q
$86.0 \mathrm{~s} \leftarrow$	$84.8 \mathrm{~s} \leftarrow$	$94.8 \mathrm{~s} \leftarrow$	$94.2 \mathrm{~s} \leftarrow$	$94.7 \mathrm{~s} \Leftarrow$
115.9 s	115.6 s	116.0 s	115.7 s	114.8 s
116.5 s	116.4 s	116.2 s	116.4 s	115.4 s
119.0 s	118.8 s	118.7 s	118.9 s	118.1 s
163.3 s	163.4 s	163.5 s	164.1 s	163.0 s
165.0 s	165.5 s	165.4 s	165.1 s	165.0 s
165.2 s	165.7 s	165.9 s	165.8 s	166.0 s
187.4 d	187.6 d	187.6 d	187.5 d	187.5 d
187.4 d	187.6 d	187.6 d	187.8 d	187.6 d

${ }^{a}$ All spectra were recorded in CDCl_{3} solutions. The designations $\mathrm{s}, \mathrm{d}, \mathrm{t}$, and q refer to proton-coupled multiplicities singlet, doublet, triplet, and quartet respectively. The designations \leftarrow and \Leftarrow highlight high-field and low-field resonances respectively owing to quaternary carbons.
absorptions at $\delta 46.4$ and 48.1. In contrast, the corresponding quaternary carbons in robustadials A and B absorb about 10 ppm upfield at $\delta 38.2-38.3$. Likewise, the quaternary carbons at position 3 in 24a-c absorb at $\delta 94.5$ ± 0.3, but the corresponding quaternary carbons in robustadials A and B absorb at least 10 ppm upfield at $\delta 86.0$ and 84.8 respectively. Furthermore, ${ }^{1}$ H NMR comparison of the dialdehyde 24a with robustadial A dimethyl ether clearly showed their nonidentity. Especially noteworthy are two resonances at $\delta 2.50$ and 2.71 , which correspond to the bridgehead methine hydrogens in $\mathbf{2 4 a}$. The corresponding methine hydrogen resonances for robustadial A occur at higher field.

Demethylation of 24 a with BCl_{3} completed our total synthesis of 2a. ${ }^{11}$ Evidently, the structures of robustadial A and, presumably, robustadial B are isomeric with those proposed previously. ${ }^{4}$ Biogenetic considerations suggest a terpenoid origin for the non-prenylphenol portion of robustadials. ${ }^{12}$ Rather than the bicyclo[3.2.0]heptyl structures suggested originally, we propose that the terpenoid portion of the robustadials might reasonably be a bicyclo[2.2.1]heptane ring system 25 derived from camphene or a bicyclo[3.1.1]heptyl ring system 26 derived from pinene. Further synthetic studies described in the accompanying paper ${ }^{13}$ rule out prenylphenol-camphane

[^5]
structures 25 , and it now seems likely that the robustadials are prenylphenol derivatives 26 of pinane.

Experimental Section

All reactions were run under a positive pressure of dry nitrogen or argon. Reactions requiring anhydrous conditions were performed in flame-dried glassware cooled under nitrogen. Anhydrous solvents were transferred with an oven-dried syringe. Solvents were distilled before use: benzene and toluene from potassium, dimethylformamide (DMF) and acetonitrile from calcium hydride, dichloromethane and carbon tetrachloride from phosphorus pentoxide, diethyl ether and pentane from sodium hydride (mineral oil dispersion), tetrahydrofuran (THF) from potassium benzophenone ketyl. All chromatography solvents were distilled prior to use. Triply distilled water and methanol used for reverse-phase HPLC were degassed under water-aspirator vacuum for $15-20 \mathrm{~min}$ prior to use. 1-Chloro-3-methyl-2-butene was either purchased from Eastman Kodak or prepared as described previously. ${ }^{14}$ Thin-layer chromatography (TLC) was performed on glass plates coated with 0.25 mm of silica gel (Kieselgel $60 \mathrm{~F}_{254}$, E. Merck, Darmstadt, Germany) and preparative TLC on glass plates coated with 0.5 mm of silica gel. Analytical TLC plates were developed by spraying of the plates with vanillin indicator ($6 \% \mathrm{w} / \mathrm{v}$ vanillin in $10 \% \mathrm{v} / \mathrm{v}$ ethanolic $\mathrm{H}_{2} \mathrm{SO}_{4}$) and heating with hot air. Flash chromatography ${ }^{15}$ was performed on $230-400$-mesh silica gel 60 supplied by E. Merck. Column eluates in preparative HPLC were monitored with a variable wavelength UV absorbance detector or a differential refractometer. Gas chromatography (GC) was performed on a gas chromatograph equipped with a thermal conductivity detector using $11 \mathrm{ft} \times 1 / 4 \mathrm{in}$. columns containing the specified column packing, and flow rates of helium were on the order of $20-30$ $\mathrm{mL} / \mathrm{min}$. Melting points are uncorrected.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 200 and 50.31 MHz , respectively, in CDCl_{3} unless stated otherwise. Hydrogen substitution on C atoms was determined with fully H coupled spectra, assisted by fully decoupled and attached proton test (APT) ${ }^{13} \mathrm{C}$ NMR experiments. The signs + and - refer to the peaks above the base line (s and t) and peaks below the base line (d and q), respectively, in APT experiments. Mass spectra (MS) were obtained on an AEI MS30 double-beam mass spectrometer at an ionizing current of 3 A and ionizing voltage of $30-45 \mathrm{eV}$.
2-(2,4,6-Trimethoxyphenyl)ethyl Bromide. A solution of 2 -(2,4,6-trimethoxyphenyl)ethan-1-ol ${ }^{8 \mathrm{~b}}$ ($0.55 \mathrm{~g}, 2.59 \mathrm{mmol}$), triphenylphosphine ($0.85 \mathrm{~g}, 3.24 \mathrm{mmol}$), and carbon tetrabromide ($1.08 \mathrm{~g}, 3.26 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(25 \mathrm{~mL})$ was stirred at room temperature for 2 h . Solvent was removed under reduced pressure, and the residue thus obtained was purified by flash chromatography ($10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexanes) to give the title bromide ($0.63 \mathrm{~g}, 88 \%$), which crystallized from n-pentane: $\mathrm{mp} 88-90^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 3.10(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~m}, 2 \mathrm{H}), 3.77$ ($\mathrm{s}, 6 \mathrm{H}$), 3.78 ($\mathrm{s}, 3$ $\mathrm{H}), 6.08$ ($\mathrm{s}, 2 \mathrm{H}$).
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrO}_{3}: \mathrm{C}, 48.01 ; \mathrm{H}, 5.49$. Found: C, 48.12; H, 5.49.

3,3-Dimethylhepta-1,6-dien-4-ol (3). Allylmagnesium bromide ($22.5 \mathrm{~mL}, 0.9 \mathrm{M}$ in ether, 20.3 mmol), was added with stirring to a solution of 2,2 -dimethylbut- $3-\mathrm{enal}^{7}(1.70 \mathrm{~g}, 17.3 \mathrm{mmol})$ in

[^6]anhydrous ether (20 mL) at $0^{\circ} \mathrm{C}$. The resulting solution was stirred at room temperature for 30 min , then hydrolyzed with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL), and finally extracted with ether $(3 \times 20 \mathrm{~mL})$. The combined ether extracts were washed with water ($3 \times 10 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered, and the solvent was rotary evaporated below $20^{\circ} \mathrm{C}$ to give $3(2.3 \mathrm{~g}, 95 \%)$ as an oil: ${ }^{1} \mathrm{H}$ NMR $\delta 1.04(\mathrm{~s}, 6 \mathrm{H}), 1.65(\mathrm{~d}, J=5.8 \mathrm{~Hz}, \mathrm{H}), 2.08$ $(\mathrm{m}, 2 \mathrm{H}), 3.37(\mathrm{~m}, \mathrm{H}), 5.07(\mathrm{~m}, 4 \mathrm{H}), 5.85(\mathrm{~m}, 2 \mathrm{H})$.

2,2-Dimethylbicyclo[3.2.0]heptan-3-ols 4. A solution of 3 $(2.30 \mathrm{~g}, 16.4 \mathrm{mmol})$ and $\mathrm{CuOTf}(0.17 \mathrm{~g})$ in anhydrous ether (240 mL) was illuminated with a medium-pressure Hanovia mercury vapor UV lamp under an atmosphere of argon through an internal water-cooled quartz immersion well for 3 h . The reaction mixture was then washed with aqueous $\mathrm{NH}_{4} \mathrm{OH}$ solution ($3 \times 10 \mathrm{~mL}$) and then water $(3 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered, and the solvent was removed by careful distillation. The residue thus obtained was purified by GC to give 4 n and 4 x . endo-2,2-Di-methylbicyclo[3.2.0]heptan-3-ol (4n): ${ }^{1} \mathrm{H}$ NMR $\delta 0.68$ (s, 3 H), $1.02(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~m}, 3 \mathrm{H}), 1.88(\mathrm{~m}, \mathrm{H}), 2.23(\mathrm{~m}, 4 \mathrm{H}), 2.73(\mathrm{~m}$, H), 3.82 (d, $J=5.4 \mathrm{~Hz}, \mathrm{H}$). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 77.09$; H, 11.50. Found: C, 77.10; H, 11.36. exo-2,2-Dimethyl-bicyclo[3.2.0]heptan-3-ol (4x): ${ }^{1} \mathrm{H}$ NMR $\delta 0.68$ (s, 3 H), 0.91 ($\mathrm{s}, 3 \mathrm{H}$), 1.35 (m, H), 1.76 (m, 5 H), 2.14 (m, H), 2.32 (m, H), 2.57 (m, H), 4.22 (dd, $J=7.2,10.4 \mathrm{~Hz}, \mathrm{H}$). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}$: C, 77.09; H, 11.50. Found: C, 77.12; H, 11.57. The total yield of photocyclization products 4 n plus 4 x was 2 g (87%).
2,2-Dimethylbicyclo[3.2.0]heptan-3-one (5). Jones reagent $(6.3 \mathrm{~mL}, 2.70 \mathrm{M}, 17.0 \mathrm{mmol})$ was added portionwise with stirring to a solution of the alcohols $4(2.2 \mathrm{~g}, 15.7 \mathrm{mmol})$ in acetone (12.5 mL) at $0^{\circ} \mathrm{C}$ over 15 min . The reaction mixture was stirred at $5-10^{\circ} \mathrm{C}$ for 2 h , followed by addition of an aqueous NaCl solution $(25 \mathrm{~mL})$ and extraction with ether $(3 \times 30 \mathrm{~mL})$. The combined extracts were washed successively with saturated aqueous NaCl $(3 \times 5 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(3 \times 5 \mathrm{~mL})$, and water ($3 \times 5 \mathrm{~mL}$), then dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered, and the solvent was removed by rotary evaporation at $<20^{\circ} \mathrm{C}$. The residue thus obtained was distilled under reduced pressure to give $5(1.80 \mathrm{~g}$, 83%), bp $58-59^{\circ} \mathrm{C}(10 \mathrm{~mm})$. An analytical sample was obtained by GC: ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~m}, \mathrm{H}), 1.67$ (m, H), $2.10(\mathrm{~m}, 3 \mathrm{H}), 2.73(\mathrm{~m}, 3 \mathrm{H})$.
Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 78.21 ; \mathrm{H}, 10.21$. Found: C, 78.44; H, 10.32 .
Benzopyrans 9. $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.81 \mathrm{~mL}, 0.93 \mathrm{~g}, 6.5 \mathrm{mmol})$ was added with stirring to a solution of $8^{8 \mathrm{~b}}(2.0 \mathrm{~g}, 6.24 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{~mL})$ at room temperature. The resulting yellow solution was stirred for 30 min , then quenched by addition of saturated aqueous NaHCO_{3} solution (5 mL), and extracted with ether (100 mL). The extract was washed with water $(3 \times 5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered, and the solvent was removed under reduced pressure. The residue thus obtained contained two isomers which showed HPLC retention times (Whatman M-20 partisil column, 35\% toluene in hexanes) of 54 and 75 min at $14 \mathrm{~mL} / \mathrm{min}$. A less polar isomer $9 \mathrm{a}(0.97 \mathrm{~g}, 51 \%)$ was obtained as an oil: ${ }^{1} \mathrm{H}$ NMR $\delta 0.80$ $(\mathrm{s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 1.5-2.3(7 \mathrm{H}), 2.3-2.6(\mathrm{~m}, 3 \mathrm{H}), 2.73(\mathrm{~m}$, 2 H), 3.75 ($\mathrm{s}, 3 \mathrm{H}$), 3.77 ($\mathrm{s}, 3 \mathrm{H}$), 5.99 ($\mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}$), 6.02 (d, $J=2.4 \mathrm{~Hz}, \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 16.35(-, \mathrm{q}), 17.34(+, \mathrm{t}), 20.58(+$, t), $24.22(+$, t), $25.15(+$, t), $26.70(-$, q), $34.31(-$, d), $40.03(+$, t), $47.04(+$, s), $51.21(-$ d $), 55.05(-$, q, 2 C), $90.29(-$, d), 90.95 $(+, \mathrm{s}), 93.62(-, \mathrm{d}), 103.01(+, \mathrm{s}), 155.41(+, \mathrm{s}), 158.24(+, \mathrm{s}), 159.35$ $(+, s)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}: \mathrm{C}, 75.46 ; \mathrm{H}, 8.67$. Found: C, $75.51 ; \mathrm{H}, 8.65$. A more polar isomer $9 \mathrm{~b}(0.63 \mathrm{~g}, 33 \%)$ was also obtained as an oil: ${ }^{1} \mathrm{H}$ NMR $\delta 0.99(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 1.4-2.3$ $(9 \mathrm{H}), 2.3-2.5(\mathrm{~m}, \mathrm{H}), 2.6-2.8(2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, 5.93 (d, $J=2.4 \mathrm{~Hz}, \mathrm{H}$), 5.98 (d, $J=2.4 \mathrm{~Hz}, \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 17.49$ $(+$, t), $19.06(+$, t), $21.08(-, q), 23.47(-, q), 24.97(+$, t), 25.99 $(+$, t), $34.56(-, d), 40.26(+, t), 45.91(+$, s), $49.11(-, d), 55.04$ $(-$, q), $55.09(-, q), 90.31(-$, d), $90.76(+$, s), $93.50(-, d), 102.87$ $(+, \mathrm{s}), 155.46(+, \mathrm{s}), 158.16(+$, s $), 159.14(+, \mathrm{s})$.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$: C, $75.46 ; \mathrm{H}, 8.67$. Found: C, 75.56; H, 8.43.
2-Isovaleryl-1,3,5-trimethoxybenzene (11). AlCl_{3} (11.34 g , 0.085 mol) was added in small portions (0.5 g each) with stirring to a solution of $1,3,5$-trimethoxybenzene ($16.82 \mathrm{~g}, 0.10 \mathrm{~mol}$) and isovaleryl chloride ($12.8 \mathrm{~mL}, 12.7 \mathrm{~g}, 0.015 \mathrm{~mol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ at -10 to $-5^{\circ} \mathrm{C}$ over 2 h . The resulting yellow solution was stirred at $0^{\circ} \mathrm{C}$ for 30 min and then treated carefully
with water (20 mL). The organic layer was diluted with ether $\left(200 \mathrm{~mL}\right.$) and then washed with aqueous NaHCO_{3} solution ($4 \times$ 25 mL) and water $(3 \times 10 \mathrm{~mL})$. After drying $\left(\mathrm{MgSO}_{4}\right)$, filtration, and solvent removal under reduced pressure, the residue was purified by flash chromatography (10% ethyl acetate in hexanes) to give $1,3,5$-trimethoxybenzene (2 g) and (20% ethyl acetate in hexanes) to furnish $11(19.56 \mathrm{~g}, 88 \%$ based on trimethoxybenzene consumed) as an oil: ${ }^{1} \mathrm{H}$ NMR $\delta 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.16$ ($\mathrm{m}, J=6.8 \mathrm{~Hz}, \mathrm{H}$), $2.57(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.72(\mathrm{~s}, 6 \mathrm{H}$), 3.77 (s, 3 H), 6.05 (s, 2 H).

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4}: \mathrm{C}, 66.64 ; \mathrm{H}, 7.99$. Found: C, 66.76; H, 7.85 .
3-Hydroxy-5-methyl-3-(2,4,6-trimethoxyphenyl)hexanenitrile (12). To a solution of n-butyllithium ($30.4 \mathrm{~mL}, 2.6 \mathrm{M}$ in hexanes, 79.1 mmol) in anhydrous THF (175 mL) at $-78^{\circ} \mathrm{C}$ under argon was added anhydrous $\mathrm{CH}_{3} \mathrm{CN}(4.25 \mathrm{~mL}, 3.34 \mathrm{~g}, 81.3 \mathrm{mmol})$ over 5 min with stirring. After the mixture was stirred at -78 ${ }^{\circ} \mathrm{C}$ for ${ }^{1} / 2 \mathrm{~h}$, the resulting white suspension was treated with a solution of 11 ($19 \mathrm{~g}, 75.30 \mathrm{mmol}$) in anhydrous THF (75 mL) during $15-20 \mathrm{~min}$. The cold bath was removed, and the pale yellow solution was stirred for 10 min before it was poured into ice/ water $/ \mathrm{HCl}(500 \mathrm{~g})$ and extracted with ether $(3 \times 75 \mathrm{~mL})$. The organic extracts were washed with water ($3 \times 20 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered, and the solvent was removed under reduced pressure. The residue thus obtained was crystallized from n hexanes to afford $12(21.0 \mathrm{~g}, 95 \%): \mathrm{mp} 60-63{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.72$ (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}$), $0.84(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{~m}, 2 \mathrm{H}), 2.00$ (m, H), $2.73(\mathrm{~d}, J=16 \mathrm{~Hz}, \mathrm{H}), 3.25(\mathrm{~d}, J=16 \mathrm{~Hz}, \mathrm{H}), 3.79(\mathrm{~s}$, 3 H), 3.84 ($\mathrm{s}, 6 \mathrm{H}$), 6.17 ($\mathrm{s}, 2 \mathrm{H}$), 6.50 (s, H).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4}$: $\mathrm{C}, 65.51 ; \mathrm{H}, 7.90$. Found: C, 65.57; H, 7.89 .
5-Methyl-3-(2,4,6-trimethoxyphenyl)hex-2-enenitrile. A solution of $12(2.86 \mathrm{~g}, 9.75 \mathrm{mmol})$ and p-toluenesulfonic acid (0.01 $\mathrm{g}, 0.05 \mathrm{mmol}$) in anhydrous benzene (100 mL) was boiled under reflux with stirring for ${ }^{1 / 2}$ h by using a Dean-Stark trap, cooled to room temperature, diluted with ether (150 mL), extracted with aqueous NaHCO_{3} solution ($3 \times 5 \mathrm{~mL}$) and water ($3 \times 5 \mathrm{~mL}$), dried (MgSO_{4}), and filtered, and the solvent was removed under reduced pressure. The residue thus obtained was purified by flash chromatography (10% ethyl acetate in hexanes) to give the title alkene ($2.55 \mathrm{~g}, 95 \%$), which crystallized from n-hexanes: mp 76-78 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.52(\mathrm{~m}, \mathrm{H}), 2.62(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 5.22(\mathrm{~s}, \mathrm{H}), 6.09(\mathrm{~s}, 2$ H).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3}: \mathrm{C}, 69.79 ; \mathrm{H}, 7.69$. Found: $\mathrm{C}, 69.81$; H, 7.75 .
5-Methyl-3-(2,4,6-trimethoxyphenyl)hexanenitrile (13). Method A. A solution of the above alkene ($2.50 \mathrm{~g}, 9.08 \mathrm{mmol}$), triethylsilane ($4.0 \mathrm{~mL}, 2.91 \mathrm{~g}, 25.0 \mathrm{mmol}$), and trifluoroacetic acid $(5.50 \mathrm{~mL}, 8.14 \mathrm{~g}, 71.4 \mathrm{mmol}$) was gently boiled under reflux at $80^{\circ} \mathrm{C}$ for 2 h . The contents of the flask were cooled to room temperature, poured carefully into saturated aqeuous NaHCO_{3} solution (250 mL), and extracted with ether ($3 \times 40 \mathrm{~mL}$). The combined organic extracts were washed with water ($3 \times 5 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered, and the solvent was removed under reduced pressure. Excess triethylsilane was removed under high vacuum (0.2 mm) at $80^{\circ} \mathrm{C}$ (oil-bath temperature). The residue thus obtained was purified by flash chromatography (10% ethyl acetate in hexanes) to give $13(2.32 \mathrm{~g}, 92 \%)$ as an oil: ${ }^{1} \mathrm{H}$ NMR $\delta 0.78(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{~m}, 3 \mathrm{H})$, $1.86(\mathrm{~m}, \mathrm{H}), 2.66(\mathrm{~d}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 9 \mathrm{H}), 6.09(\mathrm{~s}, 2 \mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{3}$: C, 69.28: H, 8.36; N, 5.05. Found: C, 69.25; H, 8.29; N, 5.16.

Method B. Trifluoroacetic acid ($18.5 \mathrm{~mL}, 27.4 \mathrm{~g}, 0.24 \mathrm{~mol}$) was added with stirring to a solution of $12(11.7 \mathrm{~g}, 0.04 \mathrm{~mol})$ and triethylsilane ($16.0 \mathrm{~mL}, 11.7 \mathrm{~g}, 0.10 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The cold bath was removed, and the reaction mixture was allowed to come to room temperature over 1 h , during which time trifluoroacetic acid melted and reaction occurred. The contents of the flask were then poured cautiously into saturated aqueous NaHCO_{3} solution (250 mL), with careful avoidance of excess effervescence. The resulting mixture was extracted with ether $(3 \times 75 \mathrm{~mL})$. The combined organic extracts were washed with water ($3 \times 20 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered, and the solvent was removed under reduced pressure. Excess triethylsilane was removed under high vacuum (0.2 mm) at $80^{\circ} \mathrm{C}$ (oil-bath
temperature). The residue thus obtained was purified by flash chromatography (10% ethyl acetate in hexanes) to give 13 (11.2 $\mathrm{g}, 95 \%$) as an oil identical with the same product prepared by method A as described above.

6-(2,4,6-Trimethoxyphenyl)-3,3,8-trimethylnon-1-en-4-one (15). Isopentenylmagnesium chloride ($135 \mathrm{~mL}, 0.45 \mathrm{M}$ in THF, 60.8 mmol , prepared from 4-chloro-2-methyl-2-butene and Mg turnings in THF; N.B. attempts to make this reagent in concentrations more than $0.45-0.50 \mathrm{M}$ led to extensive decomposition with formation of a white precipitate) was added dropwise with stirring to a solution of $13(11.1 \mathrm{~g}, 40 \mathrm{mmol})$ in anhydrous THF $(75 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ under argon over 30 min . The reaction mixture was stirred for an additional 15 min and then hydrolyzed with $10 \% \mathrm{HCl}$. The yellow solution thus formed was boiled under reflux for 30 min , then cooled to room temperature, and extracted with ether ($3 \times 75 \mathrm{~mL}$). The combined organic extracts were washed with water ($3 \times 10 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered, and the solvent was removed under reduced pressure. The residue thus obtained was purified by flash chromatography (10% ethyl acetate in hexanes) to give ketone $15(12.5 \mathrm{~g}, 90 \%)$ as an oil: ${ }^{1} \mathrm{H}$ NMR $\delta 0.74(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.02-1.28$ $(9 \mathrm{H}), 1.70(\mathrm{t}, J=9.8 \mathrm{~Hz}, \mathrm{H}), 2.82(\mathrm{~d}, J=2.4 \mathrm{~Hz}, \mathrm{H}), 2.85(\mathrm{~d}$, $J=2 \mathrm{~Hz}, \mathrm{H}), 3.75(\mathrm{~s}, 9 \mathrm{H}), 5.03(\mathrm{~m}, 2 \mathrm{H}), 5.84(\mathrm{~m}, \mathrm{H}), 6.06(\mathrm{~s}$, 2 H).

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{4}$: $\mathrm{C}, 72.38 ; \mathrm{H}, 9.26$. Found: $\mathrm{C}, 72.45$; H, 9.26.

4-Allyl-6-(2,4,6-trimethoxyphenyl)-3,3,8-trimethylnon-1-en-4-ol (16). Allylmagnesium bromide ($45 \mathrm{~mL}, 0.8 \mathrm{M}$ in ether, 36 mmol) was added dropwise with stirring to a solution of 15 ($10.5 \mathrm{~g}, 30 \mathrm{mmol}$) in anhydrous ether (100 mL) at $-20^{\circ} \mathrm{C}$ over 30 min . The reaction mixture was stirred for an additional 30 min , then hydrolyzed with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(20 \mathrm{~mL})$, and extracted with ether $(3 \times 40 \mathrm{~mL})$. The combined organic extracts were washed with water ($3 \times 10 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered, and the solvent was removed under reduced pressure. The residue thus obtained was purified by flash chromatography (10% ethyl acetate in hexanes) to give 16 (10.5 $\mathrm{g}, 90 \%$) as an oil: ${ }^{1} \mathrm{H}$ NMR $\delta 0.75(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.78$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 6 \mathrm{H}), 1.11(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~m}, \mathrm{H}), 1.85$ $(\mathrm{m}, 2 \mathrm{H}), 2.42(\mathrm{~m}, 3 \mathrm{H}), 3.49(\mathrm{~m}, \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, $4.99(\mathrm{~m}, 4 \mathrm{H}), 5.97(\mathrm{~m}, 2 \mathrm{H}), 6.10(\mathrm{~s}, 2 \mathrm{H})$.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{4}: \mathrm{C}, 73.80 ; \mathrm{H}, 9.81$. Found: C, 73.62 ; H, 9.67

2,2-Dimethyl-3-[4-methyl-2-(2,4,6-trimethoxyphenyl)-pentyl]bicyclo[3.2.0]heptan-3-ol (17). A solution of 16 (2.75 $\mathrm{g}, 7.04 \mathrm{mmol}$) and CuOTf (0.5 g) in anhydrous ether (240 mL) was illuminated through a water-cooled quartz immersion well with a Hanovia medium-pressure UV lamp under argon for 3 h . The reaction mixture was then washed with an aqueous $\mathrm{NH}_{4} \mathrm{OH}$ solution ($3 \times 10 \mathrm{~mL}$) and water $(3 \times 10 \mathrm{~mL})$, then dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered, and the solvent was removed under reduced pressure. The residue thus obtained was purified by flash chromatography (6% ethyl acetate in hexanes) to give one diastereomer of 4,4-dimethyl-3-[4-methyl-2-(2,4,6-trimethoxyphenyl)pentyl]bi-cyclo[3.2.0]hept-3-ene $\left(0.4 \mathrm{~g}, 15 \%\right.$): ${ }^{1} \mathrm{H}$ NMR $\delta 0.74$ (d, $J=4.8$ $\mathrm{Hz}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 6 \mathrm{H}), 0.83(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-1.45(3 \mathrm{H})$, $1.45-2.16(5 \mathrm{H}), 2.20-2.61(2 \mathrm{H}), 2.93(\mathrm{~m}, \mathrm{H}), 3.53(\mathrm{~m}, \mathrm{H}), 3.74$ (s, 6 H), $3.76(\mathrm{~s}, 3 \mathrm{H}), 4.93$ and $5.26(2 \mathrm{~s}, \mathrm{H}), 6.07(\mathrm{~s}, 2 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{3}$: C, 77.37; $\mathrm{H}, 9.74$. Found: C, $77.39 ; \mathrm{H}, 9.58$. The reaction also provided $17(2.06 \mathrm{~g}, 75 \%)$ as an oil which solidified on standing: ${ }^{1} \mathrm{H}$ NMR $\delta 0.70$ (s, 3 H), 0.78 (d, $J=6.4$ $\mathrm{Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}), 1.06-1.42(2 \mathrm{H})$, $1.45-1.95(6 \mathrm{H}), 1.96-2.50(5 \mathrm{H}), 2.68(\mathrm{~m}, \mathrm{H}), 3.48(\mathrm{~m}, \mathrm{H}), 3.77$ $(\mathrm{s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 6.12(\mathrm{~s}, 2 \mathrm{H}) ; \mathrm{MS}, m / e$ (relative intensity) $390\left(11, \mathrm{M}^{+}\right), 333(6), 238(10.6), 237(65)$. Anal. Calcd For $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{4}$: $\mathrm{C}, 73.80 ; \mathrm{H}, 9.81$. Found: $\mathrm{C}, 73.92 ; \mathrm{H}, 9.80$.

3-[2-(4,6-Dimethoxy-2-hydroxyphenyl)-4-methylpentyl]-2,2-dimethylbicyclo[3.2.0]heptan-3-ol (18). Ethanethiol (0.94 $\mathrm{mL}, 0.79 \mathrm{~g}, 12.7 \mathrm{mmol}$) was added to a suspension of sodium hydride ($0.31 \mathrm{~g}, 12.9 \mathrm{mmol}, 0.52 \mathrm{~g}$, of a 60% oil dispersion) in anhydrous DMF (18 mL) under an atmosphere of argon. The mixture was stirred for 5 min before a solution of $17(2 \mathrm{~g}, 5.12$ mmol) in anhydrous DMF (12 mL) was added; the resulting mixture was then boiled under reflux for $2 \mathrm{~h}\left(150^{\circ} \mathrm{C}\right.$ oil-bath temperature). The cooled mixture was acidified with $10 \% \mathrm{HCl}$ and extracted with ether ($3 \times 30 \mathrm{~mL}$). The combined ether
extracts were washed with water $(3 \times 5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered, and the solvent was removed under reduced pressure. The residue thus obtained was purified by flash chromatography (6% ethyl acetate in hexanes) to give $18(1.60 \mathrm{~g}, 83 \%)$, which crystallized from n-pentane: mp $125-127^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.72$ (s, $3 \mathrm{H}), 0.78(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=4.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.10-1.50(2 \mathrm{H}), 1.52-2.38(11 \mathrm{H}), 2.48(\mathrm{~m}, \mathrm{H}), 2.81(\mathrm{~m}, \mathrm{H})$, 3.19 (m, H), 3.73 (s, 3 H), 3.75 ($\mathrm{s}, 3 \mathrm{H}$), 6.08 ($\mathrm{s}, 2 \mathrm{H}$); MS, m / e (relative intensity) $376\left(0.3, \mathrm{M}^{+}\right), 301(6.5), 223(36), 167$ (39).

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{4}: \mathrm{C}, 73.36 ; \mathrm{H}, 9.64$. Found: C, 73.44; H, 9.69.
(土)-[1' $\left.\alpha, 3^{\prime} \beta, 3^{\prime}\left(R^{*}\right), 5^{\prime} \alpha\right]-3,4$-Dihydro-5,7-dimethoxy- $2^{\prime}, 2^{\prime}-$ dimethyl-4-(2-methylpropyl)spiro[2H-1-benzopyran-2,3'bicyclo[3.2.0] heptane] (19a). $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.58 \mathrm{~mL}, 0.67 \mathrm{~g}, 4.72$ $\mathrm{mmol})$ was added with stirring to a solution of $18(1.7 \mathrm{~g}, 4.51 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at room temperature. The resulting yellow solution was stirred for 30 min and then quenched with saturated aqueous NaHCO_{3} solution (5 mL). The mixture was diluted with ether (100 mL), washed with water ($3 \times 6 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered, and the solvent was removed under reduced pressure. The residue thus obtained was purified by HPLC (Whatman M-20 Partisil column, 35% toluene in hexanes). A less polar fraction, which emerged from the column after 31 min at a flow of 14 $\mathrm{mL} / \mathrm{min}$, contained one pure major isomer $19 \mathrm{a}(1 \mathrm{~g}, 62 \%)$, which crystallized from hexanes: $\mathrm{mp} 80-82^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.77$ (s, 3 H), $0.86(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~s}$, $3 \mathrm{H}), 1.38-2.19(10 \mathrm{H}), 2.34-2.56(2 \mathrm{H}), 2.64(\mathrm{~m}, \mathrm{H}), 2.81(\mathrm{~m}, \mathrm{H})$, $3.72(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 5.98(\mathrm{~d}, J=2.4 \mathrm{~Hz}, \mathrm{H}), 6.02(\mathrm{~d}, J=$ $2.6 \mathrm{~Hz}, \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 16.36(-, \mathrm{q}), 20.59(+, \mathrm{t}), 21.22(-, \mathrm{q}), 23.84$ $(+$, t), $24.37(-, q), 25.58(-$, d), $26.84(-$, q), $27.28(-$, d), $34.41(-$, d), $34.68(+, \mathrm{t}), 38.81(+, \mathrm{t}), 45.05(+, \mathrm{t}), 47.15(+, \mathrm{s}), 50.86(-$, d), $54.92(-$, q), $55.10(-$, q), $91.37(+$, s), $91.41(-$, d), $94.61(-$, d), $109.04(+, \mathrm{s}), 156.15(+, \mathrm{s}), 159.07(+, \mathrm{s}), 159.15(+, \mathrm{s}) ; \mathrm{MS}, m / e$ (relative intensity) $358\left(12.4, \mathrm{M}^{+}\right), 301$ (49.7), 223 (3.0), 167 (10). Anal. Caled for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{3}$: C, 77.05; H, 9.56. Found: C, 77.03; H, 9.66.

A more polar fraction, which emerged from the column after 49 min at a flow of $14 \mathrm{~mL} / \mathrm{min}$, contained a mixture of two isomers $(0.25 \mathrm{~g}, 15 \%)$. These isomers were separated by reverse-phase HPLC (Waters Bondapak C-18 column, $20 \% \mathrm{H}_{2} \mathrm{O}$ in methanol) to give 19 b ($125 \mathrm{mg}, 7.7 \%$) and 19 c ($105 \mathrm{mg}, 6.6 \%$). Compound 19b showed the following spectral data: ${ }^{1} \mathrm{H}$ NMR $\delta 0.90$ (d, $J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 6 \mathrm{H}), 2.62(\mathrm{~m}, 2$ H), $1.36-2.36(11 \mathrm{H}), 2.88(\mathrm{~m}, \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 5.93$ (d, $J=2.4 \mathrm{~Hz}, \mathrm{H}$), $6.01(\mathrm{~d}, J=6.4 \mathrm{~Hz}, \mathrm{H}) ;{ }^{13} \mathrm{H}$ NMR $\delta 19.40(+$, t), $20.93(-, q), 21.25(-, q), 23.80(-, q), 24.36(-, q), 25.58(+$, t $)$, $25.65(-$, d), $27.66(-, d), 34.47(-$, d), $34.65(+, t), 39.42(+, t)$, $45.02(+, \mathrm{t}), 45.89(+$, s $), 48.96(-$, d), $55.02(-, \mathrm{q}), 55.12(-, \mathrm{q})$, $90.72(+$, s), $91.72(-$, d), $94.48(-$, d), $109.20(+$, s), $156.30(+$, s), $158.86(+$, s $), 158.99(+, \mathrm{s})$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{3} 358.2508$, found $358.2512 ; \mathrm{MS}, m / e$ (relative intensity) $358\left(5.9, \mathrm{M}^{+}\right), 301$ (26.6.6), 233 (2.9), 181 (2.3), 167 (6.8), 81 (1.2). Compound 19c showed the following spectral data: ${ }^{1} \mathrm{H}$ NMR $\delta 0.92$ (d, $J=6.4$ $\mathrm{Hz}, 3 \mathrm{H}$), $0.93(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H})$, $1.18-1.94(8 \mathrm{H}), 1.95-2.38(3 \mathrm{H}), 2.72(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{~m}, \mathrm{H}), 3.72$ (s, 3 H), $3.74(\mathrm{~s}, 3 \mathrm{H}), 5.91(\mathrm{~d}, J=2.4 \mathrm{~Hz}, \mathrm{H}), 5.98(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 18.52(+, \mathrm{t}), 21.45(-, \mathrm{q}), 22.06(-, \mathrm{q}), 22.67$ $(-$, q), $23.89(-, q), 26.02(-$, d), $26.47(-$, d), $26.79(+$, t), $28.14(+$, t), $35.96(-, \mathrm{d}), 43.38(+, \mathrm{t}), 43.96(+, \mathrm{t}), 47.44(+, \mathrm{s}), 47.97(-, \mathrm{d})$, $55.10(-$, q), $55.13(-$, q), $90.81(-$, d), $91.00(+$, s), $93.63(-$, d), 108.22 $(+$, s), $154.83(+$, s), $158.48(+$, s), $159.08(+$, s); HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{3} 358.2508$, found 358.2501 ; MS, m / e (relative intensity) 358 (4.3, M^{+}), 301 (17.2), 233 (2), 231 (2), 191 (2.8), 167 (6), 91 (1.1), 81 (1.7).
(\pm)- $\left[1^{\prime} \alpha, 3^{\prime} \beta, 3^{\prime}\left(R^{*}\right), 5^{\prime} \alpha\right]-6,8$-Dibromo-3,4-dihydro-5,7-di-methoxy- $2^{\prime}, 2^{\prime}$-dimethyl-4-(2-methylpropyl)spiro[2H-1-benzopyran-2,3'-bicyclo[3.2.0]heptane] (20a). Bromine (0.30 $\mathrm{mL}, 0.94 \mathrm{~g}, 5.88 \mathrm{mmol}$) was added with stirring to a solution of $19 \mathrm{a}(1.05 \mathrm{~g}, 2.93 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ over 2 min . The mixture was stirred for an additional 2 min before saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL}$) was added. The resulting mixture was extracted with ether (60 mL), the extract was washed with water ($3 \times 5 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered, and the solvent was evaporated under reduced pressure to give 20 a ($1.48 \mathrm{~g}, 98 \%$), which was crystallized from hexanes: $\mathrm{mp} 131-133^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.81(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3$

formula	$\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{Br}_{2} \mathrm{O}_{3}$
formula wt	516.324 amu
space group	P1
a	9.148 （2）\AA
b	10.052 （2）\AA
c	13.736 （4）A
α	93.38 （2）${ }^{\circ}$
β	107.13 （2）${ }^{\circ}$
γ	104.25 （2）${ }^{\circ}$
vol	1158.0 （5）\AA^{3}
Z	2
ρ（obsd）	$1.48 \mathrm{~g} / \mathrm{cm}^{3}$
ρ（calcd）	$1.48 \mathrm{~g} / \mathrm{cm}^{3}$
cryst dimens	$0.33 \times 0.26 \times 0.14 \mathrm{~mm}$
cryst faces	$\begin{aligned} & (013),(00 \overline{3}),(0 \overline{2} 0),(02 \overline{2}),(\overline{2} 02),(20 \overline{2}), \\ & \quad(\overline{2} 12),(020) \end{aligned}$
cryst vol	$0.0126 \mathrm{~mm}^{3}$
diffractometer	Syntex P2 ${ }_{1}$
radiation	Mo K α（ 0.71073 Å）
monochromator	graphite crystal
linear abs coeff	$34.842 \mathrm{~cm}^{-1}$
transmission factors	0．4122－0．6406
temp	$23^{\circ} \mathrm{C}$
scan type	$2 \theta-\theta$
scan speed	3.91 deg min^{-1}
scan range	1.1° below $\mathrm{K} \alpha_{1}$ to 1.1° above $\mathrm{K} \alpha_{2}$
2θ scan limits	$3.0-45.0^{\circ}$
std reflections	3 per 100 reflections
indices	（45̄了），（ $\overline{2} \overline{5} 3)$ ，（315）
cryst stability	no indication of std reflection decay during data collection
total reflections scanned	3373
unique data $F_{0}{ }^{2}>3 \sigma\left(F_{0}{ }^{2}\right)$	1976
av abs corr	0.7454
final no．of variables	253
$R(F)\left(F_{0}{ }^{2}>3 \sigma \mathrm{~F}_{0}{ }^{2}\right)$	0.037
$R_{\mathrm{w}}(F)\left(F_{0}{ }^{2}>3 \sigma F_{0}{ }^{2}\right)$	0.040

$\mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.24-2.27(10 \mathrm{H}), 2.52(\mathrm{~m}, \mathrm{H}), 2.72(\mathrm{~m}, 2 \mathrm{H}), 2.90$ $(\mathrm{m}, \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}, \mathrm{m} / e$（relative intensity） 518 （7）， 516 （3．7， M^{+}）， 461 （13．7）， 382 （7．5）， 328 （8）， 326 （16）．

Anal．Calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{Br}_{2} \mathrm{O}_{3}$ ： $\mathrm{C}, 53.50 ; \mathrm{H}, 6.25$ ．Found： C ， $53.63, \mathrm{H}, 6.25$ ．

Collection of X－ray Diffraction Data for 20a．Colorless single crystals suitable for examination by X－ray diffraction procedures were obtained upon recrystallization of 20a from hexane．A crystal（dimensions $0.33 \times 0.26 \times 0.14 \mathrm{~mm}$ ）was selected for data collection on a Syntex $\mathrm{P} 2_{1}$ automated four－circle dif－ fractometer．The crystal was found to be triclinic，and no sys－ tematic absences were observed，suggesting the space group $P 1$ ． Unit cell parameters and the orientation matrix were obtained and data collection was carried out by using a $2 \theta-\theta$ scan．Details appear in Table II．

The positions of the non－hydrogen atoms were found by direct methods．${ }^{16}$ All hydrogen atoms whose approximate positions could be obtained from the electron density map were placed in idealized positions，and those remaining were included by cal－ culation（all were based upon $\mathrm{C}-\mathrm{H}=0.95 \AA$ ，tetrahedral or trigonal angles，and idealized thermal parameters with $B=1.0 \AA^{2}$ greater than the equivalent B of the atom to which it is attached）．Re－ finement was based on F and involved only those reflections having $F_{0}{ }^{2}>3 \sigma\left(F_{0}{ }^{2}\right)$ ．Full－matrix least－squares refinement of positional and anisotropic thermal parameters for all non－hydrogen atoms led to final convergence with $R(F)=0.037, R_{w}(F)=0.040$ ， and GOF $=1.3151$ for 253 variables and 1976 reflections．
$(\pm)-\left[1^{\prime} \alpha, 3^{\prime} \beta, 3^{\prime}\left(R^{*}\right), 5^{\prime} \alpha\right]-3,4$－Dihydro－5，7－dimethoxy－ $2^{\prime}, 2^{\prime}$－ dimethyl－4－（2－methylpropyl）spiro［2H－1－benzopyran－2，3＇－ bicyclo［3．2．0］heptane］－6，8－dicarboxylic Acid（21a）．Compound
（16）（a）Main，P．；Fiske，S．J．；Hulls，S．E．；Lessinger，L．；Germain，G．； Declercq，J．P．；Woolfson，M．M．Multan 80．A System of Computer Programmes for the Automatic Solution of Crystal Structures from X－ray Diffraction Data；University of York，England，University of Louvain，Belgium．（b）The UCLA Crystallographic Computing Package， Jan 5， 1982.

20a（ $1.36 \mathrm{~g}, 2.63 \mathrm{mmol}$ ）in anhydrous THF（ 10 mL ）was added dropwise with stirring to a solution of n－butyllithium（ 6.74 mL ， 2.35 M in hexanes， 15.9 mmol ）in anhydrous THF（ 35 mL ）at -78 ${ }^{\circ} \mathrm{C}$ under an atmosphere of argon over 5 min ．The reaction mixture was stirred for an additional 2 min before anhydrous CO_{2} gas was bubbled through it．The resulting mixture was poured into an ice／water／ HCl mixture（ 100 g ）and then extracted with ether（ $3 \times 40 \mathrm{~mL}$ ）．The combined organic phases were extracted with saturated aqueous NaHCO_{3} solution $(3 \times 10 \mathrm{~mL})$ and then water $(2 \times 5 \mathrm{~mL})$ ．The NaHCO_{3} extract was acidified with 10% HCl and then extracted with ether（ $3 \times 30 \mathrm{~mL}$ ）．The combined extracts were washed with water $(3 \times 5 \mathrm{~mL})$ ，dried $\left(\mathrm{MgSO}_{4}\right)$ ，and filtered，and the solvent was removed under reduced pressure to give 2la（ $0.82 \mathrm{~g}, 69 \%$ ），which was crystallized from ethyl ace－ tate／hexanes：mp $118-121^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.81(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~d}$ ， $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.11-2.42$ $(11 \mathrm{H}), 2.50(\mathrm{~m}, \mathrm{H}), 2.70(\mathrm{~m}, \mathrm{H}), 2.90(\mathrm{~m}, \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.90$ （ $\mathrm{s}, 3 \mathrm{H}$ ）．

Anal．Calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{7}$ ：C，67．24；H，7．67．Found：C，67．21， H， 7.63 ．

Dimethyl（土）－［1＇$\left.\alpha, 3^{\prime} \beta, 3^{\prime}\left(R^{*}\right), 5^{\prime} \alpha\right]-3,4$－Dihydro－5，7－dimeth－ oxy－2＇， 2^{\prime}－dimethyl－4－（2－methylpropyl）spiro［2H－1－benzo－ pyran－2，3＇－bicyclo［3．2．0］heptane］－6，8－dicarboxylate（22a）．A solution of $21 \mathrm{a}(0.80 \mathrm{~g}, 1.79 \mathrm{mmol})$ in ether $(20 \mathrm{~mL})$ was treated dropwise with an ethereal solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ until a yellow color persisted．Solvent was removed under reduced pressure，and the product thus obtained was purified by flash chromatography（ 12% ethyl acetate in hexanes）to give $22 \mathrm{a}(0.83 \mathrm{~g}, 98 \%$ ），which was crystallized from ethyl acetate／hexanes：mp $135{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.79(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3$ $\mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 1.02-2.25(11 \mathrm{H}), 2.48(\mathrm{~m}, \mathrm{H}), 2.66(\mathrm{~m}, \mathrm{H}), 2.84$ $(\mathrm{m}, \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$ ．

Anal．Calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{7}$ ： $\mathrm{C}, 68.33 ; \mathrm{H}, 8.07$ ．Found： $\mathrm{C}, 68.42$ ； H，7．99．
（土）－［1＇$\left.\alpha, 3^{\prime} \beta, 3^{\prime}\left(R^{*}\right), 5^{\prime} \alpha\right]-3,4-$ Dihydro－6，8－bis（hydroxy－ methyl）－5，7－dimethoxy－2＇， 2^{\prime}－dimethyl－4－（2－methylpropyl）－ spiro［2H－1－benzopyran－2，3＇－bicyclo［3．2．0］heptane］（23a）． Diisobutylaluminum hydride（DIBAH）（ $2.25 \mathrm{M}, 2 \mathrm{M}$ in toluene， $4.50 \mathrm{mmol})$ was added with stirring to a solution of $22 \mathrm{a}(0.43 \mathrm{~g}$ ， 0.91 mmol ）in anhydrous toluene（ 8 mL ）at $-78^{\circ} \mathrm{C}$ under an atmosphere of argon over 15 min ．The resulting mixture was stirred for 1 h followed by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ ．After being warmed to room temperature，the mixture was acidified with citric acid monohydrate and then extracted with ether $(3 \times 20 \mathrm{~mL})$ ．The combined organic extracts were washed with water $(3 \times 5 \mathrm{~mL})$ ，dried $\left(\mathrm{MgSO}_{4}\right)$ ，and filtered，and the solvent was removed under reduced pressure．The residue thus obtained was purified by flash chromatography（ 40% ethyl acetate in hexanes）to give $23 \mathrm{a}(0.36 \mathrm{~g}, 95 \%$ ）as an oil，which solidified upon standing：${ }^{1} \mathrm{H}$ NMR $\delta 0.84(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.08-2.44$ $(13 \mathrm{H}), 2.56(\mathrm{~m}, \mathrm{H}), 2.72(\mathrm{~m}, \mathrm{H}), 2.89(\mathrm{~m}, \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.85$ （ $\mathrm{s}, 3 \mathrm{H}$ ）， 4.67 （br s， 4 H ）．

Anal．Calcd for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{5}$ ：C，71．73； $\mathrm{H}, 9.15$ ．Found：C，71．89； H，9．15．
$(\pm)-\left[1^{\prime} \alpha, 3^{\prime} \beta, 3^{\prime}\left(R^{*}\right), 5^{\prime} \alpha\right]-6,8$－Diformyl－3，4－dihydro－5，7－di－ methoxy－2＇， 2^{\prime}－dimethyl－4－（2－methylpropyl）spiro［2H－1－ benzopyran－2，3＇bicyclo［3．2．0］heptane］（24a）．A mixture of $23 a(0.35 \mathrm{~g}, 0.84 \mathrm{mmol})$ and pyridinium dichromate（PDC）（3．0 $\mathrm{g}, 7.97 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was stirred at room temperature for 10 h and then diluted with ether（ 50 mL ）．The supernatant was decanted from a brown solid．The insoluble residue was washed thoroughly with anhydrous ether $(3 \times 5 \mathrm{~mL})$ ．The com－ bined organic solutions were passed through a short column of Florisil，and the solvent was removed under reduced pressure． The residue thus obtained was purified by flash chromatography （ 10% ethyl acetate in hexanes）to give $24 \mathrm{a}(0.26 \mathrm{~g}, 75 \%$ ）as an amorphous powder：mp $40-42^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.83$（s， 3 H ）， 0.88 $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H})$ ， $1.13-2.33(11 \mathrm{H}), 2.50(\mathrm{~m}, \mathrm{H}), 2.71(\mathrm{~m}, \mathrm{H}), 2.87(\mathrm{~m}, \mathrm{H}), 3.84(\mathrm{~s}$ ， $3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 10.26(\mathrm{~s}, \mathrm{H}), 10.35(\mathrm{~s}, \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR（see Table $\mathrm{I}) ;{ }^{1} \mathrm{H}$ NMR（pyridine－d_{5} ）$\delta 0.80(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3$ $\mathrm{H}), 0.98(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.03-1.40(4 \mathrm{H}), 1.43-2.24(9 \mathrm{H})$ ， $2.45(\mathrm{~m}, 3 \mathrm{H}), 3.00(\mathrm{~m}, \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 10.51(\mathrm{~s}$ ， $\mathrm{H}), 10.64(\mathrm{~s}, \mathrm{H}) ;$ HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{5} 414.2406$ ，found 414．2410；MS，m / e（relative intensity） $414\left(1.5, \mathrm{M}^{+}\right), 357$（5．2），

279 （2．2）， 223 （ 9.1 ）， 135 （0．7）， 107 （1．2）， 91 （2．1）， 81 （3．5）．
（土）－［1＇$\left.\alpha, 3^{\prime} \beta, 3^{\prime}\left(\boldsymbol{R}^{*}\right), 5^{\prime} \alpha\right]-6,8$－Diformyl－3，4－dihydro－5，7－di－ hydroxy－2＇， 2^{\prime}－dimethyl－4－（2－methylpropyl）spiro［2H－1－ benzopyran－2，3＇－bicyclo［3．2．0］heptane］（2a）．Boron trichloride （ $1.5 \mathrm{~mL}, 1.0 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.5 \mathrm{mmol}$ ）was added with stirring to a solution of $24 \mathrm{a}(0.12 \mathrm{~g}, 0.29 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ under argon at $0^{\circ} \mathrm{C}$ ．The resulting solution was allowed to come to room temperature and then stirred for 10 h ．Water（ 2 mL ）was carefully added，and the resulting mixture was diluted with ether（ 20 mL ）． The organic solution was washed with water（ $3 \times 5 \mathrm{~mL}$ ），dried （ MgSO_{4} ），and filtered，and the solvent was removed under reduced pressure．The residue thus obtained was purified by flash chromatography（ 2% ethyl acetate in hexanes）to give 2a（ 0.084 $\mathrm{g}, 75 \%$ ），which crystallized from hexanes：mp $129-30^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.86(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3$ $\mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.17-2.33(11 \mathrm{H}), 2.55(\mathrm{~m}, \mathrm{H}), 2.79(\mathrm{~m}, 2 \mathrm{H}), 10.01$ $(\mathrm{s}, \mathrm{H}), 10.15(\mathrm{~s}, \mathrm{H}), 13.52(\mathrm{~s}, \mathrm{H}), 13.56(\mathrm{~s}, \mathrm{H})$ ；HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{5} 386.2093$ ，found 386.2089 ；MS，m / e（relative intensity） $386\left(2.4, \mathrm{M}^{+}\right), 329(12.2), 251$（4．8）， 195 （8．3）， 91 （1．0）， 81 （3．8）．

Dibromide 20b．Arene $19 \mathrm{~b}(150 \mathrm{mg}, 0.42 \mathrm{mmol})$ was bro－ minated with bromine（ $43 \mu \mathrm{~L}, 134 \mathrm{mg}, 0.84 \mathrm{mmol}$ ）in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$（ 4 mL ）by following the procedure described for 20 a ．The dibromide 20b（ $213 \mathrm{mg}, 98.6 \%$ ）was crystallized from n－hexanes： $\operatorname{mp} 80-84$ ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.90(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3$ $\mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.13-1.31(11 \mathrm{H}), 2.69(\mathrm{~m}, 2 \mathrm{H})$ ， $2.95(\mathrm{~m}, \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$ ；HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{32}{ }^{79} \mathrm{Br}^{81} \mathrm{BrO}_{3} 516.0700$ ，found $516.0714 ; \mathrm{MS}, m / e$（relative intensity） 518 （2．2）， 516 （5．3， M^{+}）， 514 （2．2）， 461 （4．2）， 459 （6．8）， 147 （1．1）， 107 （1．5）， 93 （1．6）， 81 （6．9）．

Dicarboxylic Ester 22b．Dibromide 20b（ 175 mg ； 0.34 mmol ） was lithiated with n－butyllithium（ $0.87 \mathrm{~mL}, 2.35 \mathrm{M}$ in hexanes， $2.03 \mathrm{mmol})$ in THF（ 6 mL ）and then carboxylated with CO_{2} according to the procedure described for 21a．The resulting dicarboxylic acid 21 b was treated with an ethereal solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ until a yellow color persisted．Solvent was removed under reduced pressure．The residue thus obtained was purified by flash chromatography（ 12% ethyl acetate in hexanes）to give 22b（120 $\mathrm{mg}, 75 \%$ based on dibromide 20b）as an oil：${ }^{1} \mathrm{H}$ NMR $\delta 0.89$（d， $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~s}$, $3 \mathrm{H}), 1.06-1.38(11 \mathrm{H}), 2.58(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{~m}, \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$ ， $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) ;$ HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{7}$ 474．2617，found 474．2610；MS，m / e（relative intensity） 474 （1．2， M^{+}）， 417 （5．6）， 385 （2．5）， 307 （2）， 251 （1．5）， 105 （1．4）， 81 （1．4）， 69 （4）， 57 （3．1）， 43 （3．1）， 41 （5．4）．

Diol 23b．Diester 22b（ $90 \mathrm{mg}, 0.19 \mathrm{mmol}$ ）was reduced with DIBAH（ $0.57 \mathrm{~mL}, 2 \mathrm{M}$ in toluene， 1.14 mmol ）in toluene（ 2 mL ）， affording diol 23 b as an oil（ $78 \mathrm{mg}, 98 \%$ ），by following the pro－ cedure described for 23a：${ }^{1} \mathrm{H}$ NMR $\delta 0.90(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$ ， $0.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.06-2.37$ $(13 \mathrm{H}), 2.63(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{~m}, \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.57$ and $4.59(2 \mathrm{~s}, 2 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H})$ ；HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{5}$ 418．2719，found 418．2707；MS，m / e（relative intensity） 418 （4．4， M^{+}）， 361 （7．8）， 343 （12．1）， 265 （5．9）， 209 （3）， 91 （1．7）， 81 （2．6）．

Dialdehyde 24b．A mixture of diol 23 b （ $39 \mathrm{mg}, 0.093 \mathrm{~mol}$ ） and pyridinium dichromate（ $400 \mathrm{mg}, 1.06 \mathrm{mmol}$ ）in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was stirred at room temperature for 10 h and worked up as described for 24a．The residue thus obtained was purified by preparative TLC（ 30% ethyl acetate in hexanes）to give dialdehyde 24b（27 mg，70\％）：${ }^{1} \mathrm{H}$ NMR $\delta 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 6 \mathrm{H}), 1.06-1.35(11 \mathrm{H}), 2.62(\mathrm{~m}, 2 \mathrm{H})$ ， $2.93(\mathrm{~m}, \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 10.23(\mathrm{~s}, \mathrm{H}), 10.25(\mathrm{~s}, \mathrm{H})$ ； ${ }^{13} \mathrm{C}$ NMR（see Table I）；${ }^{1} \mathrm{H}$ NMR（pyridine－d_{5} ）$\delta 0.90(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H})$ ， $1.11-2.36(11 \mathrm{H}), 2.59(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{~m}, \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.99$ $(\mathrm{s}, 3 \mathrm{H}), 10.52(\mathrm{~s}, \mathrm{H}), 10.53(\mathrm{~s}, \mathrm{H}) ;$ HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{5}$ 414.2406 ，found 414.2402 ；MS，m / e（relative intensity） 414 （ 0.2 ， M^{+}）， 357 （2．9）， 344 （0．4）， 121 （1．1）， 107 （1．1）， 91 （3．2）， 81 （4．9）， 79 （3．9）．

Dibromide 20c．Bromination of $19 \mathrm{c}(210 \mathrm{mg}, 0.59 \mathrm{mmol})$ with bromine $\left(60 \mu \mathrm{~L}, 187 \mathrm{mg}, 0.117 \mathrm{mmol}\right.$ ）in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ ，following the procedure described for 20a，provided dibromide 20c（296 $\mathrm{mg}, 98 \%$ ），which crystallized from n－hexanes： $\operatorname{mp} 90-93^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.92(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.39-1.98(8 \mathrm{H}), 1.99-2.38(3 \mathrm{H}), 2.82(\mathrm{~m}$, $2 \mathrm{H}), 3.05(\mathrm{~m}, \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$ ；HRMS calcd for
$\mathrm{C}_{23} \mathrm{H}_{32}{ }^{79} \mathrm{Br}^{81} \mathrm{BrO}_{3}$ 516．0700，found 516．0719；MS，m / e（relative intensity） 518 （1．8）， 516 （4．5， M^{+}）， 514 （2．4）， 461 （ 6.0 ）， 459 （11．6）， 458 （1．3）， 457 （6．4）， 93 （0．5）， 81 （0．8）．

Dicarboxylic Ester 22c．Dibromide 20c（ $290 \mathrm{mg}, 0.56 \mathrm{mmol}$ ） was lithiated with n－butyllithium（ $1.43 \mathrm{~mL}, 2.35 \mathrm{M}$ in hexanes， 3.36 mmol ）in THF（ 7.5 mL ）and then carboxylated with CO_{2} according to the procedure described for 21a．The resulting dicarboxylic acid 21c was treated with an ethereal solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ until a yellow color persisted．Solvent was removed under reduced pressure．The residue thus obtained was purified by flash chromatography（ 12% ethyl acetate in hexanes）to give 22 c （ 180 $\mathrm{mg}, 67 \%$ based on dibromide）as an oil：${ }^{1} \mathrm{H}$ NMR $\delta 0.89$（s， 3 H ）， $0.90(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H})$ ， $1.34-1.90(8 \mathrm{H}), 1.91-2.36(3 \mathrm{H}), 2.48(\mathrm{~m}, \mathrm{H}), 2.73(\mathrm{~m}, \mathrm{H}), 2.95$ $(\mathrm{m}, \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$ ； HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{7} 474.2617$ ，found 474．2636；MS， m / e （relative intensity） $474\left(2.6, \mathrm{M}^{+}\right), 417$（10．3）， 385 （3）， 307 （2．3）， 251 （2）， 82 （2．1）， 69 （2．3）， 43 （2．3）， 41 （5．5）．

Diol 23c．According to the procedure described for 23a，diester 22c（ $150 \mathrm{mg}, 0.32 \mathrm{mmol}$ ）was reduced with DIBAH（ $0.79 \mathrm{~mL}, 2$ M in toluene， 1.58 mmol ）in toluene（ 2.5 mL ）．The crude product was purified by flash chromatography（ 35% ethyl acetate in hexanes）to give $23 \mathrm{c}\left(130 \mathrm{mg}, 98 \%\right.$ ）as an oil：${ }^{1} \mathrm{H}$ NMR $\delta 0.92$ （d，$J=6.4 \mathrm{~Hz}, 3 \mathrm{H}$ ）， $0.95(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.08$ $(\mathrm{s}, 3 \mathrm{H}), 1.35-1.94(8 \mathrm{H}), 1.95-2.56(5 \mathrm{H}), 2.71(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{~m}$, $\mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H})$ ；HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{5} 418.2719$ ，found 418．2722；MS，m / e（relative intensity） 418 （ $3.4, \mathrm{M}^{+}$）， 361 （6．8）， 343 （4．6）， 265 （4．5）， 209 （2．3）， 119 （1．1）， 91 （1．1）， 85 （1．6）， 83 （1．9）．

Dialdehyde 24c．A mixture of diol 23c（ $65 \mathrm{mg}, 0.15 \mathrm{mmol}$ ） and pyridinium dichromate（ $584 \mathrm{mg}, 1.55 \mathrm{mmol}$ ）in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was stirred at room temperature for 10 h and worked up as described for $24 a$ ．The residue thus obtained was purified by preparative TLC（ 30% ethyl acetate in hexanes）to give dialdehyde 24c（ $45 \mathrm{mg}, 70 \%$ ）：${ }^{1} \mathrm{H}$ NMR $\delta 0.91(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.91$（s， $3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.39-2.40(11 \mathrm{H})$ ， $2.72(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{~m}, \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 10.23(\mathrm{~s}$, 2 H ）${ }^{13} \mathrm{C}$ NMR（see Table I）；${ }^{1} \mathrm{H}$ NMR（pyridine－d_{5} ）$\delta 0.94$（d， $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.4 \mathrm{~Hz}$ ， $3 \mathrm{H}), 1.43-2.40(11 \mathrm{H}), 2.74(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{~m}, \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H})$ ， $3.98(\mathrm{~s}, 3 \mathrm{H}), 10.51(\mathrm{~s}, \mathrm{H}), 10.52(\mathrm{~s}, \mathrm{H}) ;$ HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{5}$ 414.2406 ，found 414.2405 ；MS，m / e（relative intensity） 414 （1．9， M^{+}）， 357 （4．2）， 345 （1．0）， 279 （1．6）， 275 （1．1）， 247 （0．8）， 223 （7．2）， 81 （1．0）．

Acknowledgment．This work was supported by grants from the National Science Foundation（to R．G．S．）and the donors of the Petroleum Research Fund，administered by the American Chemical Society（to W．J．Y．）．We thank Profs．Xu，Synder，and Nakanishi for copies of spectra of the robustadials．

Registry No．（ \pm ）－2a，114862－22－5；（ \pm ）－3，114862－23－6；（ \pm ）－4x， 114925－65－4；（土）－4n，114862－24－7；（土）－5，114862－25－8；（土）－8， 114925－66－5；（ \pm ）－9a，114862－26－9；（ \pm ）－9b，114925－67－6；11， 101032－04－6；$(\pm)-12,114862-27-0 ;(\pm)-13,114862-28-1 ;(\pm)-15$ ， 114862－29－2；（土）－（ $\left.R^{*}, R^{*}\right)-16,114862-30-5 ;(\pm)-\left(R^{*}, S^{*}\right)-16$ ， 114862－35－0；17，101032－09－1；18，101054－45－9；（土）－19a，114925－ 68－7；（土）－19b，114925－69－8；（ \pm ）－19c，114925－70－1；（ \pm ）－20a， 114925－71－2；（ \pm ）－20b，114925－72－3；（ \pm ）－20c，114925－73－4；(\pm)－21a， 114862－31－6；（ \pm ）－21b，114925－74－5；（土）－21c，114925－75－6；（土）－22a， 114925－76－7；（ \pm ）－22b，114925－77－8；（ \pm ）－22c，114925－78－9；（ \pm ）－23a， 114862－32－7；（ \pm ）－23b，114925－79－0；（ \pm ）－23c，114925－80－3；（ \pm ）－24a， 114925－81－4；（土）－24b，114925－82－5；（土）－24c，114925－83－6；2，4，6－ $(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}, 832-87-1 ; 2,4,6-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Br}$ ， $106800-22-0 ; 1,3,5-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}, 621-23-8 ; i-\mathrm{BuCOCl}, 108-12-3$ ； $\mathrm{OHCCMe}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ ， $5820-05-3 ; 2,4,6-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{C}(i-\mathrm{Bu})=$ CHCN，114862－33－8； $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{Cl}, 503-60-6$ ；Robustadial A， 88130－99－8；4，4－dimethyl－3－［4－methyl－2－（2，4，6－trimethoxy－ phenyl）pentyl］bicyclo［3．2．0］hept－3－ene，114862－34－9．

Supplementary Material Available：Tables of bond lengths and angles，fractional atomic coordinates，and anisotropic thermal parameters for non－hydrogen atoms of 20a（5 pages）．Ordering information is given on any current masthead page．

[^0]: (1) The disease affects about 250 million to 300 million people worldwide each year, causing debilitating illness.
 (2) Peter, W. Br. Med. Bull. 1982, 38, 187.

[^1]: (3) Qin, G. W.; Chen, H. C.; Wang, H. C.; Qian, M. K. Huaxue Xuebao 1981, 39, 83.

[^2]: (4) Xu, R.; Synder, J. K.; Nakanishi, K. J. Am. Chem. Soc. 1984, 106, 734.
 (5) Qin, G. W., private communication.
 (6) For a recent review, see: Salomon, R. G. Tetrahedron 1983, 39, 485.
 (7) Julia, M.; Baillarge, M. Bull. Soc. Chim. Fr. 1966, 732.

[^3]: (8) (a) Cannon, J. R.; Feutrill, G. I.; Wong, L. C. Aust. J. Chem. 1983, 36, 2575. (b) Lal, K.; Ghosh, S.; Salomon, R. G. J. Org. Chem. 1987, 52 , 1072.

[^4]: (9) Kaiser, E. M.; Hauser, C. R. J. Org. Chem. 1968, 33, 3402.
 (10) (a) Analogous reactions of allylic zinc reagents are known; ${ }^{10 b}$ however, crotylmagnesium bromide in diethyl ether undergoes regioselective electrophilic attack by propionitrile at the less substituted allylic terminus. ${ }^{10 c}$ (b) Rousseau, G.; Conia, J. M. Tetrahedron Lett. 1981, 22, 649. (c) Andrac, M. Ann. Chim. (Paris) 1964, 287.

[^5]: (11) Lal, K.; Zarate, E. A.; Youngs, W. J.; Salomon, R. G. J. Am. Chem. Soc. 1986, $108,1311$.
 (12) Sawada, T.; Kozuka, M.; Komiya, T.; Amano, T.; Goto, M. Chem. Pharm. Bull. 1980, 8, 2546. Amano, T.; Komiya, T.; Hori, M.; Goto, M.; Kozuka, M.; Sawada, T. Chromatographia 1981, 13, 545 (J. Chromatogr. 1981, 208, 347). Kozuka, M.; Sawada, T.; Kasahara, F.; Mizuta, E.; Amano, T.; Komiya, T.; Goto, M. Chem. Pharm. Bull. 1982, 30, 1952. Kozuka, M.; Sawada, T.; Mizuta, E.; Kasahara, F.; Amano, T.; Komiya, T.; Goto, M. Chem. Pharm. Bull. 1982, 30, 1964.
 (13) Mazza, S. M.; Lal, K.; Salomon, R. G. J. Org. Chem., second of three papers in this issue.

[^6]: (14) Jones, W. J.; Chorley, H. W. T. J. Chem. Soc. 1946, 832.
 (15) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.

